Dissolved arsenic determination in natural waters

This is an optimized colorimetric method based from Johnson and Pilson [1] to determine arsenic (As) concentrations (<0.03-5.3 μ M) in natural waters (e.g., groundwater, seawater) containing dissolved phosphate (2-30 μ M) [2]. The basis of this method is that As(V) and phosphate form a complex with reduced molybdate that strongly absorbs in the infrared, while As(III) does not. Dissolved As can be quantified from the difference in absorbance between a sample aliquot that is pre-treated to oxidize As(III) (absorbance due to P and As(V)) and another sample aliquot pre-treated to reduce As(V) (absorbance from P only).

Reagents

Hydrochloric acid (0.55 M)

Prepare a 250 mL solution by mixing 11.4 mL of concentrated hydrochloric acid (HCl) in Milli-Q water. The solution is stable indefinitely if stored at 4 °C.

Oxidizing solution

Potassium iodate solution (2 mM)

Prepare a 100 mL solution by dissolving 0.0428 g of potassium iodate (KIO_3) in 2 wt.% HCl (~4.6 mL con'c HCl). Prepare fresh for each use.

Reducing solution

Sodium metabisulfite (0.736 M)

Prepare a 50 mL solution by dissolving 6.9960 g of sodium metabisulfite ($Na_2S_2O_5$) in Milli-Q water. Prepare fresh for each use.

Sodium thiosulfate (0.089 M)

Prepare a 50 mL solution by dissolving 0.7036 g of sodium thiosulfate ($Na_2S_2O_3$) in Milli-Q water. Prepare fresh for each use.

Sulfuric acid (1.8 M)

Prepare a 100 mL solution by mixing 36 mL of 5 M sulfuric acid (H₂SO₄) in Milli-Q water. The solution is stable indefinitely if stored at 4 °C.

Mixing procedure:

Mix together 5 mL of sodium metabisulfite solution, 5 mL of sodium thiosulfate solution and 2.5 mL of $1.8 \text{ M H}_2\text{SO}_4$ solution. This mixed reducing solution is stable for 6 h at room temperature.

Color complexing reagent

L-ascorbic acid solution (0.613 M)

Prepare a 50 mL solution by dissolving 5.3981 g of L-ascorbic acid ($C_6H_8O_6$) in Milli-Q water. Prepare fresh for each use.

Ammonium molybdate (0.024 M)

Prepare a 100 mL solution by dissolving 2.9661 g of ammonium molybdate ($NH_4M_7O_{24}\cdot 4H_2O$) in Milli-Q water. The solution is stable indefinitely if stored at 4 °C. Discard if precipitates form.

Antimonyl potassium tartrate (0.008 M)

Prepare a 100 mL solution by dissolving 0.5343 g of antimonyl potassium tartrate ($C_8H_4K_2O_{12}Sb_2\cdot 3H_2O$) in Milli-Q water. The solution is stable indefinitely if stored at 4 °C. Discard if precipitates form.

Sulfuric acid (2.5 M)

Prepare a 100 mL solution by mixing 50 mL of 5 M sulfuric acid (HCl) in Milli-Q water. The solution is stable indefinitely if stored at 4 °C.

Mixing procedure:

Mix together 4 mL L-ascorbic acid solution, 4 mL ammonium molydate solution and 2 mL potassium antimonyl tartrate solution. Add 10 mL 2.5 M H_2SO_4 solution immediately to the mixed solution after the addition of potassium antimonyl tartate to avoid generation of turbidity in the color complexing reagent. This mixed solution is stable for 6 h at room temperature.

Standards

Primary arsenate [As(III)] standard (1,000 mg/L)

Prepare a 100 mL solution by dissolving 0.1734 g sodium arsenite (NaAsO₂) in Milli-Q water. The solution is stable indefinitely if stored at 4 °C.

Primary arsenate [As(V)] standard (1,000 mg/L)

Prepare a 100 mL solution by dissolving 0.4165 g sodium arsenate dibasic heptahydrate (Na_2HAsO_4 · $7H_2O$) in Milli-Q water. The solution is stable indefinitely if stored at 4 °C.

Secondary arsenate [As(III)] standard (10 mg/L)

Prepare a 50 mL solution by mixing 0.5 mL of the primary As(III) standard in Milli-Q water. The solution is stable for ~3 months if stored at 4 °C.

Secondary arsenate [As(V)] standard (10 mg/L)

Prepare a 50 mL solution by mixing 0.5 mL of the primary As(V) standard in Milli-Q water. The solution is stable for ~3 months if stored at 4 °C.

Secondary phosphate (P) standard (50 μM)

Prepare a 50 mL solution by mixing 417 μ L of the primary P standard (6 mM, used in P analysis) in Milli-Q water. The solution is stable for 1 week if stored at 4 °C.

Calibration standards

Prepare standards of 10, 50, 200, 400 and 1,000 μ g/L from the secondary As(III) and/or As(V) standard solutions by dilution. Take the appropriated aliquots (see below) and make up to 50 mL with Milli-Q water.

Std.	[As] (μg/L)	Vol. of 2° As standard solution (mL)	Vol. of 2° P standard solution (mL)
Blank	0	0	2
1	10	0.05	2
2	50	0.25	2
3	200	1	2
4	400	2	2
5	1,000	5	2

If P determination is also needed, prepare standards of 0.1, 0.25, 0.5, 1, 2 and 3 μ M from the secondary P standard solution by dilution. Take the appropriate aliquots (see below) and make up to 50 mL with Milli-Q water. Take note that these standards are also spiked with 2 μ M P to correct for absorbance dependence of As(V)

Std.	[P] (μM)	Vol. of 2° P standard
		solution (mL)
1	0.1	0.1
2	0.5	0.5
3	1	1
4	2	2
5	3	3

Sample analysis

- 1. Switch on the instrument 15 minutes before the measurements and set wavelength to 880 nm. This is to enable the bulbs in the spectrometer to warm up.
- 2. Prepare the spectrophotometric cuvettes, always hold them from the opaque sides. Cuvettes must be inserted in the same orientation all the time, there is a small arrow at the top to help ensure they are used the same way around.
- 3. Add three 1 mL aliquots of the samples into separate spectrophotometric cuvettes.
- 4. One aliquot is treated with 0.1 mL oxidizing solution, one with 0.1 mL reducing solution and the last one with 0.1 mL 0.55 M HCl. Wait for 10 min until the redox state of As in the pretreated aliquots are reached (remains stable for at least 3 h).
- 5. After waiting for at least 10 min, add 0.1 mL of color complexing reagent to each cuvette and wait for at least 10 minutes for colour to develop in fully.
- 6. Do the same procedure for the blanks.
- 7. Measure standards and samples in the same manner and record their absorbance values. Measure as soon as possible to avoid degradation of the coloured complex.

Calculation

[As(III)] = (oxidized – untreated) [As(V)] = (untreated – reduced) [P] = reduced

Reference:

- [1] Johnson, et al., Analytica Chimica Acta, 1972, **58**, 289-299.
- [2] Dhar, et al., Analytica Chimica Acta, 2004, **526**, 203-209.